Getting Started with Network Function Virtualization (NFV)

First question that comes to mind is whether SDN and NFV are same or different or related technologies? SDN and NFV are independent technologies. SDN creates a separate management plane which sits a floor above the traditional control plane so as to get wider view of the network and orchestrate using network protocols like OpenFlow. So, with the SDN approach, network appliances with custom ASICs will get replaced by Open Software having vendor specific silicon. Protocols will get replaced with APIs and vendor specific releases will be replaced by innovative cycles. Essentially, SDN creates a programmable network.

The concept of NFV originated from SDN. So, NFV compliments SDN. NFV makes it possible to relocate the networking specific functions from dedicated appliances to generic servers. By definition, NFV is a network architecture concept which proposes to virtualize network node functions into blocks which can be connected or chained together as a service. You expect to see virtual machines running these services instead of dedicated network appliances. If a customer wants to add a new network function, the service provider can simply spin up a new virtual machine to perform that function. This collapses the network functions into single server which reduces the cost. Also, Network operators get tremendous opportunities to package services in different ways.

Listed below are small set of examples of network functions which can be virtualized:-

  • Firewall:- This can be part of VM in customer’s network periphery.
  • Load balancer
  • Gateway
  • VPN endpoint
  • DNS:- This can be part of a VM on service provider network.

ETSI (European Telecommunications Standards Institute) for NFV is the driving factor behind NFV. It specifies NFV use cases in telecommunications and data communication domains. The use cases include Virtual Enhanced Packet Core (vEPC), Virtual Customer Premise Environments (vCPE) and Virtual Provider Edge (vPE) Solutions.

As multiple devices including handheld devices connect to increasing strained network, next generation telecom equipments should support cloud, NFV technologies. They need to meet rising demands of the data traffic and address service deployment challenges. With this momentum of NFV, there are advances being made at the Hardware as well as Software layers to cater to the fast processing needs of the networking functions.

HW:

  • TCAMs which are used in integrated merchant silicon inside Network Appliances are getting higher capacities. These HW devices enhance packet processing capabilities for improved performances of packet processing for EM (Exact Match), LPM (Longest prefix Match for IP address), ACL (Access Control Lists), RM (Range Match).
  • Hardware vendors have come up with Virtual Router (vRouter) devices, which provides IP based data forwarding.
  • Various hardware based routing solutions include VPN, traffic engineering, firewalls, virtual customer premise equipment’s (vCPE) which are meant for use cases of Network Virtualization like VMware NSX.

SW:

NFV demands deployment of network services on virtual machines with a lot more improved performance. New virtualization techniques need to be used to deliver hardware performance speeds. e.g. A type 1 hypervisor running on native bare metal gives better performance than a type 2 hypervisor running on top of an operating system. There are many Software projects which are promoting acceleration for NFV deployment.

  • Data Plane Development Kit: DPDK has added lots of improvement for faster packet processing. The following paragraph gives an idea about the kind of improvements needed at software layer to meet next generation packet processing requirements.
    • BIOS configuration: DPDK recommends disabling power saving, enabling CPU performance, enabling VT-d virtualization option and appropriate choice of PCI bus.
    • PMD (poll mode drivers): Instead of using Interrupt based mechanism for packet processing, DPDK uses poll mode drivers similar to Linux NAPI architecture.
    • Huge Pages Mapping: In order to reduce packet processing overheads of Kernel networking stack, PMD enables direct transfer of packets between user space and networking device. The user space application layer gets complete packet visibility and can dissect the packet at will.
    • CPU Isolation: In order to effectively make use of processor caches, DPDK binds network functions to logical processors. Virtualization profiles use Linux mechanisms like cpuset to control and present non-uniform memory access (NUMA) topology visible to guests.
    • Performance Libraries: DPDK has developed libraries like Lockless Ring Buffers, Memory pools, Packet buffers, Cryptography, Timer, Hash, Packet distributor, Packet Fragmentor as part of application framework. Applications make use of these libraries and multi-threaded solutions. Each of these threads runs independently on logical processors of CPU to achieve maximum throughput.

These architecture changes enable to deploy wide variety of Virtual Network Functions. This gives an idea what sort of changes will help smooth ride of NFV.

  • OPNFV: This facilitates the evolution and development of network functions across open source systems. There are multiple projects to cater to NFV requirements as part of OPNFV initiative. These projects cover various NFV aspects like
    • Virtualized Network Function (VNF)
    • Element Monitoring (EM)
    • Infrastructure Virtualization layer Managers.
    • VNF Manager
    • Operations and Business support systems (OSS/BSS).

In addition to this, there are significant updates to open source projects like KVM, OpenStack, OpenvSwitch, OpenDayLight, NetMap kernel bypass.

To summarize, there are multiple challenges for NFV adoption. Here are the focus areas:-

  • Standardized interface between the virtual machines and underlined hardware.
  • Performance issues due to replacement of network appliance with commodity servers.
  • Migration plan for coexistence of existing network appliances and VM based services.
  • Simplification of network operations and management.
 
Share:

Related Posts

Navigating Big Data Storage Challenges

Navigating Big Data Storage Challenges

The last decade or so has seen a big leap in technological advancements. One of the technologies to come up at this time and see a rapid…

Share:

A Deep Dive into 5G Service-Based Architecture (SBA)

5G technology roll out signifies an immense revenue opportunity for telecom industry.

Share:
Unlocking Network Agility Open RAN and the Future of Service Management & Orchestration (SMO)

Unlocking Network Agility: Open RAN and the Future of Service Management & Orchestration (SMO)

Recently, Open RAN turned out to be a transformative and innovative solution in the telecom industry. Service Management Orchestration (SMO) serves at the core of this transformative solution, revolutionizing the way mobile networks are deployed and managed. SMO in Open RAN framework foster openness, flexibility, interoperability supporting multi-vendor and cost-effective network deployments. SMO is paving the way for a new era of wireless connectivity, shaping the future of Open RAN deployments. Read the blog to explore the significance of SMO platform in Open RAN framework.

Share:
Technical Documentation

Technical Documentation Review and Tips

Technical reviews are vital for effective and quality documentation. To make this happen, have documentation and its reviews listed as one of the deliverables – just like development or testing. This will place priority on the process, and ensure everyone involved understands the importance of proper and thorough reviews.

Share:
Importance of System Integration in Next-Generation Telecom Networks

Importance of System Integration in Next-Generation Telecom Networks

The telco sector is evolving, and the significance of system integration cannot be overplayed in the industry. The next-generation networks are ever more complex, including diverse technologies like 5G, IoT, cloud computing, and more. To ensure reliable and high-quality services, seamless system integration becomes the cornerstone. Integration ensures that distinct components and services work harmoniously, stimulating efficient communication and streamlined operations. It facilitates the interconnectivity of various subsystems, enabling real-time data exchange, advanced service delivery, and enhanced end-user experiences. Read the blog to explore the significance of system integrators in telecom industry.

Share:
5G Transport Architecture xHaul Transport

5G Transport Architecture: xHaul Transport

The telecom industry is witnessing a rapid network transformation, enabled by a wide range of pioneering technology trends. The network transformation is towards a virtualized, software defined, flexible, and open framework to support next generation 5G use cases. To effectively realize a high quality 5G user experience, future transport networks will play a crucial role to meet service requirements such as peak data rates, maximum coverage, ultra-low latency, synchronization, and security. Read the blog to explore 5G transport technologies and the key advancements in 5G transport architecture.

Share: