Performance Benchmarking of OpenStack-based VIM and VNFs for NFV Environments

This contributed article was originally published by OpenStack Superuser. We are re-publishing on our blog.

In addition to reducing CAPEX and requirement for low latency/high bandwidth network, obtaining performance from NFV infrastructure elements is critical for service providers. This post focuses on a case study of evaluation of NFV architecture components i.e. VNFs (virtual network functions) and VIM (virtual infrastructure manager) to deliver best-in-class performance to end users and offer a valid approach to active testing.

Why performance benchmarking matters

Most of the CSPs are evaluating or demonstrating the readiness of 5G network in network. Some service providers have already launched 5G in selected cities. As telecom networks go through a transition, NFV,  the core technology driving the 5G implementations is maturing due to active contribution by supporting communities and vendors who are using it to build test cases or solutions to deliver maximum potential benefits for a network.

Now, even with all required technologies and reference models in place to build 5G network, CSPs are still concerned with the end-to-end performance of network services to deliver the best services to end users. And it will be even more important for them because users will be more engaged with connected devices to explore benefits from new age technologies like internet of things,  augmented or virtual reality, autonomous cars, etc. So, the live performance, as well as the development environment, becomes even more crucial, especially when utilizing network slicing feature supported in 5G; that will require to provide performance for sliced networks having a different end to end QoS (quality of services) and QoE (quality of experience) characteristics/measurements. Like low latency, high throughput, less packet loss, etc.

Challenges

There are few challenges associated with NFV when testing its performance. Currently, NFV environments typically built with elements (VNFs, MANO, NFVi) devised by different types of vendors. Like service providers have choices for MANO layers as ONAP, ETSI OSM; VIM can be any proprietary solution or widely used OpenStack; VNFs from different vendors incorporated or chained to build network services and NFVi constructed using different hardware platform vendors. Such an environment is highly complex and has a major impact on the performance of network services and agility to be delivered by service provider.

Service providers must test and benchmark the performance of NFV elements. As the VNFs are a critical part of NFV performance of VNFs make the difference in overall NFV operations which have direct impact on network. Mostly VNFs (virtual network functions) come with different resources requirements because they different characteristics and are provided by different vendors even if all of them share common a NFV infrastructure (NFVi). Apart from VNFs, performance and functionality of VIMs (virtual infrastructure manager) needs to be benchmarked for resources and infrastructure requirements from diverse set of VNFs.

Considerations

There are a few considerations worth making to achieve high performance and throughput from NFV elements, including:

  • Performance must be monitored and tested to hunt down any errors
  • Provisions in place to quickly get back to normal operations in case of performance degradation
  • Performance testing carried out in the design phase to provide infrastructure and resource requirements by VNFs.
  • Validation checks are also needed after deployment to ensure whether allotted resources are meeting the requirements and the VNF delivers the expected performance.
  • Dev-ops or a CI/CD approach should be integrated to actively keep track on performance measures and fix patches in runtime.

A case study

At Calsoft, we have made a demo focusing on functionality testing and performance benchmarking of OpenStack-based VIM used for VNF deployment and performance testing.
Here are tools and frameworks used as below:

  • OPNFV Functest framework for functionality validation
  • OPNFV Yardstick for performance benchmarking and health tests
  • VNFs used for OpenStack based platform validation: Clearwater Metaswitch IMS, OAI EPC, Juju EPC, and Vyos Router
  • Perform end-to-end solution testing with commercially available vEPC VNFs on the cloud.

Results

  • We ran over 2,500 test cases from functest test suits and achieved a 95 percent success rate. These tests included OpenStack based VIM testing as well as open source NFVs (vims,vyous-vrouter, juju-epc)
  • 90 percent passrate for OPNFV test case for VNFs: vIMS, vEPC and vyos router

The case study is available free with registration here.

[Tweet “Performance Benchmarking of OpenStack-based VIM and VNFs for NFV Environments ~ via @CalsoftInc”]

 
Share:

Related Posts

Unlocking Network Agility Open RAN and the Future of Service Management & Orchestration (SMO)

Unlocking Network Agility: Open RAN and the Future of Service Management & Orchestration (SMO)

Recently, Open RAN turned out to be a transformative and innovative solution in the telecom industry. Service Management Orchestration (SMO) serves at the core of this transformative solution, revolutionizing the way mobile networks are deployed and managed. SMO in Open RAN framework foster openness, flexibility, interoperability supporting multi-vendor and cost-effective network deployments. SMO is paving the way for a new era of wireless connectivity, shaping the future of Open RAN deployments. Read the blog to explore the significance of SMO platform in Open RAN framework.

Share:
Technical Documentation

Technical Documentation Review and Tips

Technical reviews are vital for effective and quality documentation. To make this happen, have documentation and its reviews listed as one of the deliverables – just like development or testing. This will place priority on the process, and ensure everyone involved understands the importance of proper and thorough reviews.

Share:
Importance of System Integration in Next-Generation Telecom Networks

Importance of System Integration in Next-Generation Telecom Networks

The telco sector is evolving, and the significance of system integration cannot be overplayed in the industry. The next-generation networks are ever more complex, including diverse technologies like 5G, IoT, cloud computing, and more. To ensure reliable and high-quality services, seamless system integration becomes the cornerstone. Integration ensures that distinct components and services work harmoniously, stimulating efficient communication and streamlined operations. It facilitates the interconnectivity of various subsystems, enabling real-time data exchange, advanced service delivery, and enhanced end-user experiences. Read the blog to explore the significance of system integrators in telecom industry.

Share:
5G Transport Architecture xHaul Transport

5G Transport Architecture: xHaul Transport

The telecom industry is witnessing a rapid network transformation, enabled by a wide range of pioneering technology trends. The network transformation is towards a virtualized, software defined, flexible, and open framework to support next generation 5G use cases. To effectively realize a high quality 5G user experience, future transport networks will play a crucial role to meet service requirements such as peak data rates, maximum coverage, ultra-low latency, synchronization, and security. Read the blog to explore 5G transport technologies and the key advancements in 5G transport architecture.

Share:
Technology Trends 2024

Technology Trends 2024- The CXO perspective

In the rapidly evolving landscape of 2024, technology trends are reshaping industries and redefining business strategies. From the C-suite perspective, executives are navigating a dynamic environment where artificial intelligence, augmented reality, and blockchain are not just buzzwords but integral components of transformative business models. The Chief Experience Officers (CXOs) are at the forefront, leveraging cutting-edge technologies to enhance customer experiences, streamline operations, and drive innovation. This blog delves into the strategic insights and perspectives of CXOs as they navigate the ever-changing tech terrain, exploring how these leaders are shaping the future of their organizations in the era of 2024’s technological evolution.

Share:
Technology Trends 2024

The Winds of Technology Blowing into 2024

As 2023 draws to a close, the digital landscape is poised for a seismic shift in 2024. Generative Artificial Intelligence (Gen AI) continues its integrative streak, disrupting industries from B2B to healthcare. Networking trends emphasize simplicity, while the synergy of cloud and edge computing with Gen AI promises real-time workflows. Quantum computing, cybersecurity, intelligent automation, and sustainable technology are key players, reshaping the technological fabric. Join us as we navigate the transformative currents of 2024, unraveling the impact on enterprises in our forthcoming article. Stay tuned for the tech evolution ahead!

Share: